Полная система уравнений движения самолета. Пространственный маневр самолета Общие векторные уравнения движения самолета

Математическая модель объекта управления является основой описания и исследования процессов в контурах управления и основой синтеза этих контуров. Математическая модель строится для описания определенной группы свойств реального неограниченно сложного объекта управления.

Уравнения пространственного движения самолета как твердого тела

В аэродинамике самолета приняты следующие прямоугольные правые системы координат (рис.1.1). Земная система координат, ось которой направлена вертикальна, оси, имеют неизменную в горизонтальной плоскости ориентацию. Для обычных задач управления полетом самолетов влиянием вращения Земли на динамику движения можно пренебречь и считать систему инерциальной.

Промежуточная (земная центральная) система координат с

осями, параллельными осям земной системы и центром О, совмещенным с центром массы самолета.

Связанная система координат. Оси этой системы координат

обычно совпадают с главными центральными осями инерции самолета. Ось совпадает с продольной главной осью инерции, ось лежит в плоскости симметрии, ось близка к плоскости крыла или совпадает с ней.

Скоростная система координат. Ось этой системы ориентирована по вектору воздушной скорости самолета, ось лежит в плоскости симметрии самолета (ось подъемной силы).

Угол, образуемый продольной осью самолета с горизонтальной

плоскостью, носит название угла тангажа . Угол между проекцией продольной оси на горизонтальную плоскость и заданным направлением называется углом рысканья , курсом или путевым углом . Угол, соответствующий повороту самолета вокруг продольной оси относительно положения, при котором поперечная ось горизонтальна, именуется углом крена .

Положение вектора воздушной скорости относительно связанных осей самолета характеризуется углом атаки б и углом скольжения в . Угол атаки - это угол между проекцией вектора воздушной скорости на плоскости симметрии самолета и продольной осью, угол скольжения - угол, образуемый вектором воздушной скорости с плоскостью симметрии.

Рис.1.1 системы координат

Движение самолета как твердого тела в связанной системе координат

описываются уравнениями Эйлера:

где - компоненты вектора путевой скорости в связанной системе координат; - компоненты вектора угловой скорости в связанной системе координат; X 1 , Y 1 , Z 1, M x1, M y1 , M z1 - силы и моменты в связанной системе координат; I x , I y , I z - моменты инерции относительно главных осей; m - масса, g - ускорение силы тяжести. Математическая модель, представленная уравнениями (1.1) - (1.6), соответствует любому твердому телу с шестью степенями свободы и применительно к самолету требует дальнейшего дополнения.

Эта конкретизация модели заключается прежде всего, в раскрытии зависимостей сил и моментов от аэродинамических и иных параметров движения (координат), отклонений органов управления и возмущающих воздействий, что составляет предмет аэродинамики самолетов. В рамках стационарной аэродинамики силы и моменты, действующие на ЛА, выражаются функциями параметров полета и отклонений органов управления. Момент силы М у1 выражается функцией угловой скорости рысканья, угла скольжения в. Угловой скорости крена, отклонения руля направления, отклонения элеронов, скоростного напора (- плотность воздуха, V - воздушная скорость при отсутствии ветра совпадающая с путевой скорости), числа Маха М. При более детальном рассмотрении (большие углы атаки, в?0 ) момент M y1 оказывается зависящим также от угла атаки б:

M y1= M y1. (1.7)

Силы и моменты являются не функциями, а операторами параметров полета. Однако инерционность соответствующих операторов сопоставимы с временем движения частиц воздуха относительно поверхности, создающий силу или момент, и малы. Поэтому нестационарность аэродинамики в большинстве случаев приближено можно учесть путем введения первых временных производных. Так. Момент относительно поперечной оси с учетом запаздывания скоса потока на стабилизаторе принимается функцией не только угла атаки, но производной угла атаки

M z1= M z1 (1.8)

Отклонение руля высоты или стабилизатора.

Детальный учет нестационарной аэродинамики необходим при рассмотрении некоторых явлений аэроупругости.

В дальнейшем рассмотрение будет осуществляться в рамках стационарной аэродинамики.

Система уравнений (1.1) - (1.6) даже при отсутствии отклонений. Органов управления не является замкнутой системой.

Направляющие косинусы связанной системы координат относительно земной выражаются через углы согласно формулам, приведенным в таблице 1.1.

Таблица 1.1

Компоненты скорости в земной системе координат через направляющие косинусы таблицы 1.1 связаны с величинами V x ,V y ,V z :

C другой стороны, согласно данным таблицы 1.2 компоненты путевой скорости в связанных осях при отсутствии ветра связаны с углом атаки и углом скольжения формулами

Производные углов тангажа, крена и рысканья описываются выражениями

Система уравнений (1.1) - (1.6), (1.09), (1.10), (1.11) при раскрытых зависимостях сил и моментов от параметров полета становится полностью замкнутой системой уравнений ЛА как объекта управления, если известна зависимость плотности воздуха и скорости звука а (или температуры) от высоты Н= , т. е известна модель атмосферы. Замкнутость системы уравнений объекта означает, что его движение при заданных отклонения органов управления полностью определяется этой системой уравнений.

Математическая модель пространственного движения ЛАкак твердого тела представленная вышеперечисленными уравнениями и моделью атмосферы, несимметрична и довольна громоздка. Однако эта модель является традиционной, по крайней мере как ступень перехода к более простым моделям. Широкое распространение данной модели обусловлена тем, что она основана на стандартных угловых координатах: углах крена, рысканья, тангажа, скольжения и атаки.

Если воспользоваться в качестве координат углового положения непосредственно направляющими косинусами и выразить аэродинамические силы и моменты и тягу двигателя в виде функций проекций воздушной скорости на связанные оси и других параметров, то система уравнений пространственного движения ЛА принимает более симметричный вид:

Здесь - величина, характеризующая управление тягой двигателей.

При пренебрежении инерционностью управления тягой (неограниченная приемистость двигателя) величина будет совпадать с отклонением ручки управления двигателем (двигателями).

Рассмотрены виды движения, траектории которых строго лежат либо в вертикальной, либо в горизонтальной плоскостях. Это, конечно, некоторая схематизация, но вполне допустимая. Однако в общем случае траектория полета не лежит в одной пло­скости, а является пространственной. К таким маневрам относятся боевой разворот, спираль, косая петля, бочка и др. Рассмотрим пер­вый из перечисленных маневров.

Боевым разворотом называется маневр самолета, прй котором одновременно с изменением направления полета производится набор высоты. Пространственная траектория такого маневра является как бы комбинацией виража и горки (рис. 7.10). При расчете боевого разворота влияние боковой силы Za и перегрузки nza невелико,

Рис. 7.11. Типичная программа изменения крена уа и перегрузки пуа при боевом развороте

и маневр можно считать координированным, р « 0, nza « 0, если не применяются органы НУБС.

< Расчет боевого разворота ведется численным интегрированием уравнений (7.10) … (7.14).

Для расчета траектории боевого разворота кроме задания режима работы двигателя (обычно принимается максимальный режим) не­обходимо иметь еще две управляющие функции, за которые удобно принять nv о (W) и у а (V).

Типичный вид изменения крена и перегрузки приведен на рис. 7.11. Выбор величин параметров уа т»х и пуа тах зависит от поставлен­ной задачи боевого разворота. Из уравнений движения видно, что чем меньше перегрузка, тем меньше угловая скорость вращения, и тем большим будет время выполнения боевого разворота. Увели­чение крена при заданной перегрузке приводит к уменьшению на­бираемой высоты. В предельном случае можно подобрать столь большой крен, что боевой разворот превратится в вираж. При очень малых углах крена траектория будет приближаться к траектории горки.

Если к боевому развороту предъявить требование минимального времени маневра, не ставя условия максимального набора высоты, то по уравнению (7.11) видно, что с увеличением перегрузки и угла крена растет угловая скорость поворота траектории. С этой точки зрения обычный закон изменения этих параметров, показанный на
рис. 7.11, невыгоден, ибо в. конце маневра произведение пуа sin уа получается малым и разворот затягивается. Можно сократить время боевого разворота, применив закон изменения крена, показанный на рис. 7.11 пунктиром. В этом случае к концу разворота самолет оказывается почти в перевернутом положении и можно до самого конца маневра выдерживать постоянную максимальную перегрузку. Такой боевой разворот по аналогии с виражом можно назвать фор­сированным. Если задача разворота - повышение высоты, то сле­дует принимать небольшую перегрузку, а закон изменения крена взять обычный.

Схемы некоторых других пространственных маневров даны на рис. 7.12.

Возможности выполнения любого маневра, как плоского, так и пространственного, ограничены располагаемым значением нор­мальной перегрузки Пуа расп И МИНИМЭЛЬНОЙ ЭВОЛЮТИВНОЙ СКО­РОСТЬЮ полета, на которой возможен маневр (пуа раСП > 1, сохра­няется эффективность органов управления, не происходит свали­вания и т. п.).

Маневренные возможности можно повысить, если принимать для самолетов, для которых требуются высокие показатели маневрен­ности, крыло с профилем, изменяемым по режимам полета (по ско­рости, углу атаки). Так, отклоняя в полете при выходе на большие углы атаки предкрылки и закрылки, можно существенно увели­чить акр и Суа доп, предотвратить срыв и сваливание, существенно уменьшить границу минимальной скорости при маневре 114]. Такое управление конфигурацией крыла при маневре должно выполняться автоматически, так как внимание летчика при пилотировании пере­гружено. Быстродействие приводов, управляющих элементами, ма-. невренной механизации крыла, должно быть достаточным, чтобы гибко изменять их положение, при энергичных маневрах. Однако если такую систему можно создать, то маневренные возможности самолета на малых скоростях значительно возрастают.

Дополнительная литература , с. 104-114, П01, с. 278-294, , с. 339-390.

Контрольные вопросы

1. Какой маневр называется координированным?

2. Почему при координированном маневре в горизонтальной плоскости суще­ствует однозначная свизь между Пуа и уа?

3. Чем ограничено располагаемое значение пуа на малых индикаторных ско­ростях полета? На больших?

4. Почему с ростом пуа.1рес растет минимальная скорость полета Утщ (Яиа треб)?

5. Выведите формулу для і? в. Пр при пуаусТ, определяемом по (7.9). Про­анализируйте зависимость RB. up от высоты.

6. Покажите примерный характер изменения перегрузки пуа при выполнении петли Нестерова, бочки.

УДК 629.7333.015
Математическая модель пространственного движения маневренного самолета, учитывающая нестационарные эффекты отрывного обтекания на больших
углах атаки.
М. А. Захаров.
На основе уточненной модели аэродинамических коэффициентов продольного движения, учитывающей нестационарные эффекты отрывного обтекания при больших углах атаки, построена математическая модельпространственного движения маневренного самолета с приведением ее системы нелинейных дифференциальных уравнений к каноническому виду. Подготовлены исходные данные для введения в программу решения указанной системы на цифровой вычислительной машине. Исходные данные по аэродинамическим коэффициентам взяты из известных (охватывающих диапазоны 0...900 для углов и -400...400 для углов ) и приблизительно спрогнозированыдля углов -7200...7200 по периодическому закону. Построенная модель проиллюстрирована решениями при различных положениях органов управления самолетом.

1 Постановка задачи.
В связи с прогрессом в области вычислительной техники появилась возможность быстрее и точнее находить решение системы нелинейных дифференциальных уравнений пространственного движения самолетов. При этом математический аппарат,полно описывающий это движение, пока еще недостаточно развит. Известны работы, посвященные рассмотрению математических моделей пространственного движения маневренных самолетов (например ). При этом по отдельности предлагаются математическая модель аэродинамических коэффициентов и модель движения (в виде системы дифференциальных уравнений). Однако построение общей (совместной) модели дляпрактического использования вызывает затруднение из-за наличия в составе модели аэродинамических коэффициентов нестационарных составляющих (в частности составляющих, соответствующих структуре отрывного обтекания на крыле). При подстановке аэродинамических коэффициентов в общую систему уравнений последняя на цифровой вычислительной машине не может быть решена. В правой части получающейся системы есть члены,содержащие производные углов атаки и скольжения (,). Другая сложность заключается в том, что в печати практически отсутствует информация об аэродинамических коэффициентах для диапазона изменения углов и . В данной работе делается попытка преодоления этих трудностей.
Ранее, на основе уточненной модели аэродинамических коэффициентов , учитывающей нестационарные эффекты отрывногообтекания при больших углах атаки, была построена математическая модель продольного движения маневренного самолета. Логическим завершением усилий по внедрению уточненной модели аэродинамических коэффициентов должно стать построение модели пространственного движения маневренного самолета, включающей указанную модель коэффициентов.
Необходимо также проиллюстрировать построенную модель решениямипри изменении положения органов управления.

2 Допущения, исходные уравнения и построение математической модели.
Считаем, что жесткий маневренный самолет движется относительно плоской невращающейся Земли при отсутствии ветра. Оси тяги правого и левого двигателей параллельны оси Х связанной системы координат. При этом пространственное движение такого самолета можно выразить следующейсистемой уравнений динамики и кинематики:
; (1)
; (2)
; (3)
; (4)
; (5)
; (6)
; (7)
; (8)
; (9)
где:
; (10)
; (11)
; (12)
– линейная скорость центра масс (ЦМ) самолета; , , – его угловые скорости поворота относительно осей X, Y, Z, связанных ссамолетом , – площадь крыла; – размах крыла; – средняя аэродинамическая хорда крыла; , , – осевые моменты инерции, относительно осей OX, OY, OZ; – угол атаки; – угол скольжения; – угол крена; – угол тангажа; – угол рыскания; – кинетический момент...

Наличие у ЛА плоскости материальной симметрии позволяет разделить его пространственное движение на продольное и боковое. К продольному движению относится движение ЛА в вертикальной плоскости при отсутствии крена и скольжения, при нейтральном положении руля и элеронов. При этом происходят два поступательных и одно вращательное движение. Поступательное движение осуществляются вдоль вектора скорости и по нормали, вращательное – вокруг оси Z. Продольное движение характеризуется углом атаки α, углом наклона траектории θ, углом тангажа, скоростью полета, высотой полета, а также положением руля высоты и величиной и направлением в вертикальной плоскости тяги ДУ.

Система уравнений продольного движения самолета.

Замкнутая система, описывающая продольное движение самолета может быть выделена из полной системы уравнений, при условии, что параметры бокового движения, а также углы отклонения органов управления креном и рысканьем равны 0.

Соотношение α = ν – θ оплучено из первого геометрического уравнения после его преобразования.

Последнее уравнение системы 6.1 не влияет на остальные и может быть решено отдельно. 6.1 – нелинейная система, т.к. содержит в себе произведения переменных и тригонометрических функций, выражения для аэродинамических усилий.

Для получения упрощенной линейной модели продольного движения самолета, необходимо ввести определенные допущения и провести процедуру линеаризации. С целью обоснования дополнительных допущений, нам необходимо рассмотреть динамику продольного движения самолета при ступенчатом отклонении руля высоты.

Реакция самолета на ступенчатое отклонение руля высоты. Разделение продольного движения на долго- и кратковременное.

При ступенчатом отклонении δ в возникает момент М z (δ в), который вращает относительно оси Z со скоростью ω z . При этом происходит изменение угла тангажа и атаки. При увеличении угла атаки возникает приращение подъемной силы и соответствующий этому момент продольной статической устойчивости М z (Δα),который противодейсвует моменту М z (δ в). По истечению вращения, на определенном угле атаки он его компенсирует.

Изменение угла атаки после уравновешивания моментов М z (Δα) и М z (δ в) останавливается, но, т.к. самолет обладает определенными инерциальными свойствами, т.е. обладает моментом инерции I z относительно оси ОZ, то установление угла атаки носит колебательный характер.

Угловые колебания самолета вокруг оси ОZ будут демпфировать ся с помощью собственного момента аэродинамического демпфирования М z (ω z). Приращение подъемной силы начинает изменять направление вектора скорости. Изменяется также угол наклона траектории θ.Это в свою очередь влияет на угол атаки.Исходя из сбалансированности моментных нагрузок синхронно с изменением угла наклона траектории продолжает изменяться угол тангажа. При этом угол атаки – постоянный. Угловые движения на малом интервале происходят с высокой частотой, т.е. имеют короткий период и называются краткопериодическими.



После того, как затухнут кратковременные колебания, становится заметным изменение скорости полета. В основном за счет составляющей Gsinθ. Изменение скорости ΔV влияет на приращение подъемной силы, и как следствие, на угол наклона траектории. Последнее изменяет скорость полета. При этом возникают угасающие колебания вектора скорости по величине и направлению.

Указанные движения характеризуются низкой частотой, угасают медленно, поэтому их называют долгопериодическими.

При рассмотрении динамики продольного движения нами не была учтена дополнительная подъемная сила, создаваемая отклонением руля высоты. Данное усилие направлено на уменьшение полной подъемной силы, поэтому ддля тяжелых самолетов наблюдается явление просадки – качественное отклонение угла наклона траектории с одновременным увеличением угла тангажа. Это происходит пока приращение подъемной силы не скомпенсирует составляющую подъемной силы за счет отклонения руля высоты.

На практике, долгопериодические колебания не возникают, т.к. своевременно гасятся пилотом, или автоматическими органами управления.

Передаточные функции и структурные схемы матмодели продольного движения .

Передаточной функцией называется изображение выходной величены, по изображению входной при нулевых начальных условиях.

Особенностью передаточных функций самолета, как объекта управления является то, что отношение выходной величины, по сравнению со входной берется с отрицательным знаком. Это связано с тем, что в аэродинамике принято в качестве положенительного отклонения органов управления считать отклонения, которые создают отрицательные приращения параметров движения самолета.

В операторной форме записи имеет вид:

Системе 6.10, которая описывает кратковременное движение самолета соответствуют решения:

(6.11)

(6.12)

Таким образом, можем записать передаточные функции, которые связывают угол атаки и угловую скорость по тангажу от отклонения руля высоты

(6.13)

Для того, чтобы передаточные функции имели стандартный вид, введем следующие обозначения:

, , , , ,

Учитывая эти соотношения перепишем 6.13:

(6.14)

Таким образом, передаточные функции по углу наклона траектории и по углу тангажа, в зависимости от отклонения руля высоты будут иметь следующий вид:

(6.17)

Одним из важнейших параметров, которые характеризуют продольное движение самолета является нормальная перегрузка. Перегрузка бывает: Нормальной (по оси ОУ), продольная (по оси ОХ) и боковая (по оси OZ). Вычисляется как сумма сил, действующих на самолет в определенном направлении, деленная на силу тяжести. Проекции на оси позволяют вычислить величину и соотношение ее с g.

- нормальная перегрузка,

Из первого уравнения сил системы 6.3 получим:

Используя выражения для перегрузки перепишем:

Для условий горизонтального полета ( :

Запишем структурную схему, которая соответствует передаточной функции:


-δ в M ω z ν ν α -
θ θ

Боковая сила Z a (δ н) создает момент крена М х (δ н). Соотношение моментов М х (δ н) и М х (β) характеризует прямую и обратную реакцию самолета на отклонение руля направления. В случае, если М х (δ н)по модулю больше, чем М х (β), самолет будет наклоняться в противоположную сторону разворота.

Принимая во внимание вышесказанное можем построить структурную схему для анализа бокового движения ЛА при отклонении руля направления.

-δ н М у ω y ψ ψ

β β
F z Ψ 1
Mx

ω y ω x

В режиме так называемого плоского разворота моменты крена компенсируются пилотом, либо соответствующей системой управления. Следует отметить, что при малом боковом движении самолет кренится, вместе с этим происходит наклон подъемной силы, что вызывает боковую проекцию Y a sinγ, которая начинает развивать большое боковое движение: самолет начинает скользить на наклоненное полукрыло, при этом увеличиваются соответствующие аэродинамические силы и моменты, и значит роль начинают играть так называемые "спиральные моменты": М у (ω х) и М у (ω z). Большое боковое движение целесообразно рассматривать при уже наклоненном самолете, или на примере динамики самолета при отклонении элеронов.

Реакция самолета на отклонение элеронов.

При отклонении элеронов возникает момент М х (δ э). Самолет начинает вращаться вокруг связанной оси ОХ, при этом появляется угол крена γ. Демпфирующий момент М х (ω х) противодействует вращению самолета. При наклоне самолета вследствии изменения угла крена возникает боковая сила Z g (Уа), которая является результирующей от силы веса и подъемной силы У­ а. Эта сила "разворачивает" вектор скорости, при этом начинает меняться путевой угол Ψ 1 , что приводит к возникновению угла скольжения β и соответствующей силы Z a (β), а также момента путевой статической устойчивости М у (β), который начинает разворачивать продольную ось самолета с угловой скоростью ω у. Вследствие такого движения начинает меняться угол рысканья ψ. Боковая сила Z a (β) направлена в противоположную сторону по отношению к силе Z g (Уа) поэтому она в некоторой степени уменьшает скорость изменения путевого угла Ψ 1 .

Сила Z a (β) также является причиной момента поперечной статической устойчивости. М х (β), который в свою очередь старается вывести самолет из крена, а угловая скорость ω у и соответствующий ей спиральный аэродинамический момент М х (ω у) стараются увеличить угол крена. Если М х (ω у) больше М х (β) – возникает ак называемая "спиральная неустойчивость", при которой угол крена после возвращения элеронов в нейтральное положение продолжает увеличиваться, что приводит к развороту самолета с возрастающей угловой скоростью.

Такой разворот называется координированным разворотом, при этом угол крена задается пилотом, либо с помощью системы автоматического управления. При этом в процессе разворота компенсируются возмущающие моменты по крену М х β и М х ωу, руль направления при этом компенсирует скольжение, то есть β, Z a (β), М у (β) = 0, при этом момент М у (β), который разворачивал продольную ось самолета, замещается моментом от руля направления М у (δ н), а боковая сила Z a (β), которая препятствовала изменению путевого угла замещается силой Z a (δ н). В случае координированного разворота скорость (маневренность) увеличивается, при єтом продольная ось самолета совпадает с вектором воздушной скорости и разворачивается синхронно с изменение угла Ψ 1 .

Маневренностью самолета называется его способность изменять вектор скорости полета по величине и направлению.

Маневренные свойства реализуются летчиком при боевом маневрировании, которое состоит из отдельных законченных или незаконченных фигур пилотажа, непрерывно следующих друг за другом.

Маневренность является одним из важнейших качеств боевого самолета любого рода авиации. Она позволяет успешно вести воздушный бой, преодолевать ПВО противника, атаковать наземные цели, строить, перестраивать и распускать боевой порядок (строй) самолетов, выводить на объект в заданное время и т. д.

Особое и, можно сказать, решающее значение имеет маневренность для фронтового истребителя, ведущего воздушный бой с истербителем (истребителем-бомбардировщиком) противника. Действительно, заняв выгодное тактическое положение по отношению к противнику, можно его сбить одной-двумя ракетами или огнем даже из единственной пушки. Наоборот, если выгодное положение займет противник (например, «повиснет на хвосте»), то в такой ситуации не поможет любое количество ракет и пушек. Высокая маневренность позволяет также производить успешный выход из воздушного боя и отрыв от противника.

ПОКАЗАТЕЛИ МАНЕВРЕННОСТИ

В самом общем случае маневренность самолета можно полностью охарактеризовать секундным векторным приращением скорости. Пусть в начальный момент времени величина и направление скорости самолета изображается вектором V1 (рис. 1), а через одну секунду - вектором V2; тогда V2=V1+ΔV, где ΔV - секундное векторное приращение скорости.

Рис. 1. Секундное векторное приращение скорости

На рис. 2 изображена область возможных секундных векторных приращений скорости для некоторого самолета при его маневре в горизонтальной плоскости. Физический смысл графика состоит в том, что через одну секунду конца векторов ΔV и V2 могут оказаться только внутри области, ограниченной линией а-б-в-г-д-е. При располагаемой тяге двигателей Рр конец вектора ΔV может оказаться только на границе а-б-в-г, на которой можно отметить следующие возможные варианты маневрирования:

  • а - разгон по прямой,
  • б - разворот с разгоном,
  • в - установившийся разворот,
  • г - форсированный разворот с торможением.

При нулевой тяге и выпущенных тормозных щитках конец вектора ΔV может оказаться через секунду только на границе д-е, например, в точках:

  • д - энергичный разворот с торможением,
  • е - торможение по прямой.

При промежуточной тяге конец вектора ΔV может оказаться в любой точке между границами а-б-в-г и д-е. Отрезок г-д соответствует разворотам при Сyдоп с различной тягой.

Непонимание того факта, что маневренность определяется секундным векторным приращением скорости, т. е. величиной ΔV, иногда приводит к неправильной оценке того или иного самолета. Например, перед войной 1941-1945 гг. некоторые летчики считали, что наш старый истребитель И-16 обладал более высокими маневренными свойствами, чем новые самолеты Як-1, МиГ-3 и ЛаГГ-3. Однако в маневренных воздушных боях Як-1 проявил себя лучше, чем И-16. В чем дело? Оказывается, И-16 мог быстро «поворачиваться», но его секундные приращения ΔV были гораздо меньше, чем у Як-1 (рис. 3); т. е. фактически Як-1 обладал более высокими маневренными свойствами, если вопрос не рассматривать узко, с точки зрения только одной «поворотливости». Аналогично можно показать, что, например, самолет МиГ-21 маневреннее самолета МиГ-17.

Области возможных приращений ΔV (рис. 2 и 3) хорошо иллюстрируют физический смысл понятия маневренности, т. е. дают качественную картину явления, но не позволяют производить количественный анализ, для которого привлекаются различного рода частные и обобщенные показатели маневренности.

Секундное векторное приращение скорости ΔV связано с перегрузками следующей зависимостью:

За счет земного ускорения g все самолеты получают одинаковое приращение скорости ΔV (9,8 м/с², вертикально вниз). Боковая перегрузка nz при маневрировании обычно не используется, поэтому маневренность самолета полностью характеризуется двумя перегрузками - nx и ny (перегрузка - векторная величина, но в дальнейшем знак вектора «->» будет опускаться).

Перегрузки nх и nу являются, таким образом, общими показателями маневренности .

С этими перегрузками связаны все частные показатели:

  • rг - радиус разворота (виража) в горизонтальной плоскости;
  • wг - угловая скорость разворота в горизонтальной плоскости;
  • rв - радиус маневра в вертикальной плоскости;
  • время разворота на заданный угол;
  • wв - угловая скорость поворота траектории в вертикальной плоскости;
  • jx - ускорение в горизонтальном полете;
  • Vy - вертикальная скорость при установившемся подъеме;
  • Vyэ - скорость набора энергетической высоты и пр.

ПЕРЕГРУЗКИ

Нормальной перегрузкой ny называется отношение алгебраической суммы подъемной силы и вертикальной составляющей силы тяги (в поточной системе координат) к весу самолета:

Примечание 1. При движении по земле в создании нормальной перегрузки участвует и сила реакции земли.

Примечание 2. Самописцы САРПП регистрируют перегрузки в связанной системе координат, в которой

На самолетах обычной схемы величина Ру сравнительно мала и ею пренебрегают. Тогда нормальной перегрузкой будет отношение подъемной силы к весу самолета:

Располагаемой нормальной перегрузкой nyр называется наибольшая перегрузка, которую можно использовать в полете с соблюдением условий безопасности.

Если в последнюю формулу подставить располагаемый коэффициент подъемной силы Cyр, то полученная перегрузка и будет располагаемой.

nyр=Cyр*S*q/G (2)

В полете величина Cyр, как уже условились, может ограничиваться по сваливанию, тряске, подхвату (и тогда Cyр=Cyдоп) или по управляемости (и тогда Cyр=Cyf). Кроме того, величина nyр может ограничиваться по условиям прочности самолета, т. е. в любом случае nyр не может быть больше максимальной эксплуатационной перегрузки nyэ макс.

К названию перегрузки nyр иногда добавляют слово «кратковременная».

Используя формулу (2) и функцию Cyр(M) можно получить зависимость располагаемой перегрузки nyр от числа М и высоты полета, которая изображена графически на рис. 4 (пример). Заметим, что содержание рисунков 4,а и 4,6 совершенно одинаковое. Верхний график обычно используется для различных расчетов. Однако для летного состава удобнее график в координатах М-Н (нижний), на котором линии постоянных располагаемых перегрузок проведены прямо внутри диапазона высот и скоростей полета самолета. Проанализируем рис. 4,6.

Линия nyр=1, очевидно, является уже известной нам границей горизонтального полета. Линия nyр=7 является границей, правее и ниже которой может произойти превышение максимальной эксплуатационной перегрузки (в нашем примере nyэ макс=7).

Линии постоянных располагаемых перегрузок проходят таким образом, что nyp2/nyp1=p2/p1 т. е. между двумя любыми линиями разница в высоте такова, что отношение давлений равно отношению перегрузок.

Исходя из этого, располагаемую перегрузку можно найти, имея на диапазоне высот и скоростей только одну границу горизонтального полета.

Пусть, например, требуется определить nyр при М=1 и H=14 км (в точке А на рис. 4,6). Решение: находим высоту точки В (20 км) и давление на этой высоте (5760 Н/м2), а также давление на заданной высоте 14 км (14 750 Н/м2); искомая перегрузка в точке А будет nyр=14 750/5760 = 2,56.

Если известно, что график на рис. 4 построен для веса самолета G1 а нам требуется располагаемая перегрузка для веса G2, то пересчет производится по очевидной пропорции:

Вывод. Имея границу горизонтального полета (линию nyp1=1), построенную для веса G1, можно определить располагаемую перегрузку на любой высоте и скорости полета для любого веса G2, используя пропорцию

nyp2/nyp1=(p2/p1)*(G1/G2) (3)

Но в любом случае используемая в полете перегрузка не должна быть больше максимальной эксплуатационной. Строго говоря, для самолета, подверженного в полете большим деформациям, формула (3) не всегда справедлива. Однако к самолетам-истребителям это замечание обычно не относится. По величине nyp при самых энергичных неустановившихся маневрах можно определить такие частные характеристики маневренности самолета, как текущие радиусы rг и rв, текущие угловые скорости wг и wв.

Предельной по тяге нормальной перегрузкой nyпр называется такая наибольшая перегрузка, при которой лобовое сопротивление Q становится равным тяге Рр и при этом nx=0. К названию этой перегрузки иногда добавляют слово «длительная».

Вычисляется предельная по тяге перегрузка следующим образом:

  • для заданной высоты и числа М находим тягу Рр (по высотно-скоростным характеристикам двигателя);
  • при nyпр имеем Pр=Q=Cx*S*q, откуда можно найти Сх;
  • из сетки поляр по известным М и Сx находим Су;
  • вычисляем подъемную силу Y=Су*S*q;
  • вычисляем перегрузку ny=Y/G, которая и будет предельной по тяге, так как при расчетах мы исходили из равенства Рр=Q.

Второй метод расчета применяется, когда поляры самолета есть квадратичные параболы и когда вместо этих поляр в описании самолета даются кривые Сх0(М) и А(М):

  • находим тягу Рр;
  • запишем Рр = Cр*S*q, где Ср коэффициент тяги;
  • по условию имеем Рр = Ср*S*q=Q=Cх*Q*S*q+(A*G²n²yпр)/(S*q), откуда:

Индуктивное сопротивление пропорционально квадрату перегрузки, т. е. Qи=Qи¹*ny² (где Qи¹ - индуктивное сопротивление при nу=1). Поэтому, исходя из равенства Рр=Qo+Qи, можно записать выражение для предельной перегрузки и в таком виде:

Зависимость предельной перегрузки от числа М и высоты полета изображена графически на рис. 5.5 (пример взят из книги ).

Можно заметить, что линий nyпр=1 на рис. 5. является уже известной нам границей установившегося горизонтального полета.

В стратосфере температура воздуха постоянна и тяга пропорциональна атмосферному давлению, т. е. Рp2/Рp1=р2/p1 (здесь коэффициент тяги Ср=const), поэтому в соответствии с формулой (5.4) при заданном числе М в стратосфере имеет место пропорция:

Следовательно, предельную по тяге перегрузку на любой высоте более 11 км можно определить по давлению р1 на линии статических потолков, где nyпр1=1. Ниже 11 км пропорция (5.6) не соблюдается, так как тяга при уменьшении высоты полета растет медленнее, чем давление (вследствие увеличения температуры воздуха), и величина коэффициента тяги Ср падает. Поэтому для высот 0-11 км расчет предельных по тяге перегрузок приходится производить обычным порядком, т. е. с использованием высотно-скоростных характеристик двигателя.

По величине nyпр можно найти такие частные характеристики маневренности самолета, как радиус rг, угловую скорость wг, время tf установившегося виража, а также г, w и t любого маневра, выполняемого при постоянной энергии (прл Pр=Q).

Продольной перегрузкой nх называется отношение разности между силой тяги (считая Рх=Р) и лобовым сопротивлением к весу самолета

Примечание При движении по земле к сопротивлению следует добавить еще и силу трения колес.

Если в последнюю формулу подставить располагаемую тягу двигателей Рр, то получим так называемую располагаемую продольную перегрузку :

Рис. 5.5. Предельные по тяге перегрузки самолета F-4C «Фантом»; форсаж, масса 17,6 m

Расчет располагаемой продольной перегрузки при произвольном значении nу производим следующим образом:

  • находим тягу Рр (по высотно-скоростным характеристикам двигателя);
  • при заданной нормальной перегрузке ny вычисляем лобовое сопротивление следующим путем:
    ny->Y->Сy->Сx->Q;
  • по формуле (5.7) вычисляем nxр.

Если поляра - квадратичная парабола, то можно воспользоваться выражением Q=Q0+Qи¹*ny², в результате чего формула (5.7) примет вид

Вспомним, что при ny=nyпр ямеет место равенство

Подставив это выражение в предыдущее и разервув получим окончательную формулу

Если нас интересует величина располагаемой продольной перегрузки для горизонтального полета, т. е. для ny=1, то формула (5.8) приобретает вид

На рис. 5.6 в качестве примера приведена зависимость nxр¹ от М и Н для самолета F-4C «Фантом». Можно заметить, что кривые nxр¹(M, Н) в другом масштабе примерно повторяют ход кривых nyпр(М, Н), а линия nxр¹=0 точно совпадает с линией nyпр=1. Это и понятно, так как обе эти перегрузки связаны с тяговооруженностью самолета.

По величине nxр¹ можно определить такие частные характеристики маневренности самолета, как ускорение при горизонтальном разгоне jx, вертикальную скорость установившегося подъема Vy, скорость набора энергетической высоты Vyэ в неустановившемся прямолинейном подъеме (снижении) с изменением скорости.

Рис 5 6 Располагаемые продольные перегрузки в горизонтальном полете самолета F-4C «Фантом»; форсаж, масса 17,6 т

8. Все рассмотренные характерные перегрузки (пУ9, пупр, Я*Р> ^лгр1) часто изображаются в виде графика, приведенного на рис. 5.7. Он называется графиком обобщенных характеристик маневренности самолета. По рис. 5.7 для заданной высоты Hi при любом числе М можно найти пур (на линии Сур или п^макс). %Пр (на горизонтальной оси, т. е. при пхр = 0), Лхр1 (при пу=) и пХ9 (при любой перегрузке пу). Обобщенные характеристики наиболее удобны для различного рода расчетов, так как с них можно непосредственно снять любую величину, но они не наглядны ввиду многочисленности этих графиков и кривых на них (для каждой высоты нужно иметь отдельный график, подобный изображенному на рис. 5.7). Рис 5 7 Обобщенные характеристики маневренности самолета на высоте Hi (пример) Чтобы составить полное и наглядное представление о маневренности самолета, достаточно иметь три графиками р (М, Н) -как на рис. 5.4,6; пупр (М, Н) -как на рис. 5.5,6; пх р1 (М, Н) - как на рис. 5 6,6.

В заключение рассмотрим вопрос о влиянии эксплуатационных факторов на располагаемую и предельную по тяге нормальные перегрузки и на располагаемую продольную перегрузку

Влияние веса

Как это видно из формул (5.2) и (5.4), располагаемая нормальная перегрузка пур и предельная по тяге нормальная перегрузка nyпр изменяются обратно пропорционально весу самолета (при постоянных М и Н).

Если задана перегрузка ny, то при увеличении веса самолета продольная располагаемая перегрузка nxр уменьшается в соответствии с формулой (5.7), но простой обратной пропорциональности здесь не наблюдается, так как при увеличении G возрастает и лобовое сопротивление Q.

Влияние внешних подвесок

На перечисленные перегрузки внешние подвески могут влиять, во-первых, через свой вес и, во-вторых, через дополнительное увеличение безындуктивной части лобового сопротивления самолета.

На располагаемую нормальную перегрузку nyр сопротивление подвесок не влияет, так как эта перегрузка зависит только от величины располагаемой подъемной силы крыла.

Предельная по тяге перегрузка nyпр, как это видно из формулы (5.4), уменьшается, если увеличивается Схо. Чем больше тяга и больше разность Ср - Схо, тем меньше влияние сопротивления подвесок на предельную перегрузку.

Располагаемая продольная перегрузка лхр при возрастании Схо также уменьшается. Влияние Схо на nxр становится относительно больше при увеличении на маневре перегрузки nу.

Влияние атмосферных условий.

Для определенности рассуждений будем рассматривать увеличение температуры на 1 % при стандартном давлении р; плотность воздуха р при этом будет на 1 % меньше стандартной. Откуда:

  • при заданной воздушной скорости V располагаемая (по Сyр) нормальная перегрузка пур упадет примерно на 1%. Но при заданных индикаторной скорости Vи или числе М перегрузка nур при увеличении температуры не изменится;
  • предельная по тяге нормальная перегрузка nyпр при заданном числе М упадет, так как увеличение температуры на 1 % приводит к падению тяги Рр и коэффициента тяги Ср примерно на 2%;
  • располагаемая продольная перегрузка nхр при увеличении температуры воздуха также уменьшится в соответствии с падением тяги.

Включение форсажа (или его выключение)

Очень сильно влияет на предельную по тяге нормальную перегрузку nyпр, и располагаемую продольную перегрузку nхр. Даже на скоростях и высотах, где Рр >> Qг, увеличение тяги, например, в 2 раза приводит к увеличению nупр примерно в sqrt(2) раз и к увеличению nхр¹ (при nу = 1) примерно в 2 раза.

На скоростях и высотах, где разность Рр - Qг мала (например, вблизи статического потолка), изменение тяги приводит к еще более ощутимому изменению и nупр и nхр¹.

Что касается располагаемой (по Сyр) нормальной перегрузки nyр, то величина тяги на нее почти не влияет (считая Рy=0). Но следует учитывать, что при большей тяге самолет на маневре теряет энергию медленее и, следовательно, более длительное время может находиться на повышенных скоростях, на которых располагаемая перегрузка nyр имеет наибольшую величину.